Optimum tuning parameters for Encapsulated Evolution Strategies : Results for a nonlinear regression problem

dc.contributor.authorGeyer, H.de
dc.contributor.authorKracht, C.de
dc.contributor.authorSchulz, S.de
dc.contributor.authorUlbig, P.de
dc.date.accessioned2004-12-07T08:19:39Z
dc.date.available2004-12-07T08:19:39Z
dc.date.created1998de
dc.date.issued1998-11-08de
dc.description.abstractThe prediction of certain thermodynamic properties of pure substances and mixtures with calculation methods is a frequent task during the process design in chemical engineering. Group contribution models divide the molecules into functional groups and if the model parameters for theses groups are known, predictions of compounds that comprise these groups are possible. The model parameters have to be fitted to experimental data, which leads to a multi-parameter multimodal optimization problem. In this paper the optimization of the tuning parameters of Evolution Strategies and different methods of parameter fitting regarding the number of parameters are presented.en
dc.format.extent3755032 bytes
dc.format.extent897557 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5349
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5646
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 42de
dc.subject.ddc004de
dc.titleOptimum tuning parameters for Encapsulated Evolution Strategies : Results for a nonlinear regression problemen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CI4298_doc.ps
Size:
3.58 MB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
ci4298_doc.pdf
Size:
876.52 KB
Format:
Adobe Portable Document Format
Description:
DNB