Comparison of Neural Networks, Evolutionary Techniques and Thermodynamic Group Contribution Methods for the Prediction of Heats of Vaporization

dc.contributor.authorGeyer, Hannesde
dc.contributor.authorMandischer, Martinde
dc.contributor.authorUlbig, Peterde
dc.date.accessioned2004-12-07T08:20:07Z
dc.date.available2004-12-07T08:20:07Z
dc.date.created1999de
dc.date.issued2001-10-16de
dc.description.abstractIn this paper we report results for the prediction of thermodynamic properties based on neural networks, evolutionary algorithms and a combination of them. We compare backpropagation trained networks and evolution strategy trained networks with two physical models. Experimental data for the enthalpy of vaporization were taken from the literature in our investigation. The input information for both neural network and physical models consists of parameters describing the molecular structure of the molecules and the temperature. The results show the good ability of the neural networks to correlate and to predict the thermodynamic property. We also conclude that backpropagation training outperforms evolutionary training as well as simple hybrid training.en
dc.format.extent1170327 bytes
dc.format.extent437403 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5375
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5015
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 70de
dc.subjectchemical engineeringen
dc.subjectevolution strategiesen
dc.subjecthybrid-learningen
dc.subjectneural networksen
dc.subject.ddc004de
dc.titleComparison of Neural Networks, Evolutionary Techniques and Thermodynamic Group Contribution Methods for the Prediction of Heats of Vaporizationen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ci70.pdf
Size:
427.15 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
ci70.ps
Size:
1.12 MB
Format:
Postscript Files