Robust estimation of (partial) autocorrelation

dc.contributor.authorDürre, Alexander
dc.contributor.authorFried, Roland
dc.contributor.authorLiboschik, Tobias
dc.date.accessioned2014-04-08T10:44:15Z
dc.date.available2014-04-08T10:44:15Z
dc.date.issued2014-04-08
dc.description.abstractThe autocorrelation function (acf) and the partial autocorrelation function (pacf) are elementary tools of linear time series analysis. The sensitivity of the conventional sample acf and pacf to outliers is well known. We review robust estimators and evaluate their performances in different data situations considering Gaussian scenarios with and without outliers in a simulation study.en
dc.identifier.urihttp://hdl.handle.net/2003/33011
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-13701
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;12/2014
dc.subjectautocovarianceen
dc.subjectcorrelogramen
dc.subjecttime seriesen
dc.subjectoutliersen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleRobust estimation of (partial) autocorrelationen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1214_SFB823_Dürre_Fried_Liboschik.pdf
Size:
531.47 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: