Explicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming

dc.contributor.authorBanzhaf, Wolfgangde
dc.contributor.authorBrameier, Markusde
dc.date.accessioned2004-12-07T08:21:02Z
dc.date.available2004-12-07T08:21:02Z
dc.date.created2001de
dc.date.issued2002-04-08de
dc.description.abstractWe investigate structural and semantic distance metrics for linear genetic programs. Causal connections between changes of the genotype and fitness changes form a necessary condition for analyzing structural differences between genetic programs and for the two major objectives of this paper: (i) Distance information betweenin-dividuals is used to control structural diversity of population individuals actively by a two-level tournament selection. (ii) Variation distance of effective code is controlled for different genetic operators - including an effective variant of the mutation operator that works closely with the used distance metric. Numerous experiments have been performed for a regression problem, a classification task, and a Boolean problem.en
dc.format.extent477091 bytes
dc.format.extent991025 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5419
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15261
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 123de
dc.subject.ddc004de
dc.titleExplicit Control of Diversity and Effective Variation Distance in Linear Genetic Programmingen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
123.pdf
Size:
465.91 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
123.ps
Size:
967.8 KB
Format:
Postscript Files