Bipower-type estimation in a noisy diffusion setting

Loading...
Thumbnail Image

Date

2009-01-13T08:02:17Z

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We consider a new class of estimators for volatility functionals in the setting of frequently observed Ito diffusions which are disturbed by i.i.d. noise. These statistics extend the approach of pre-averaging as a general method for the estimation of the integrated volatility in the presence of microstructure noise and are closely related to the original concept of bipower variation in the no-noise case. We show that this approach provides efficient estimators for a large class of integrated powers of volatility and prove the associated (stable) central limit theorems. In a more general Ito semimartingale framework this method can be used to define both estimators for the entire quadratic variation of the underlying process and jump-robust estimators which are consistent for various functionals of volatility. As a by-product we obtain a simple test for the presence of jumps in the underlying semimartingale.

Description

Table of contents

Keywords

Bipower variation, Central limit theorem, High-frequency data, Microstructure noise, Quadratic variation, Semimartingale theory, Test for jumps

Citation