Minimum distance estimation of Pickands dependence function for multivariate distributions

dc.contributor.authorBerghaus, Betina
dc.contributor.authorBücher, Axel
dc.contributor.authorDette, Holger
dc.date.accessioned2012-07-30T11:43:03Z
dc.date.available2012-07-30T11:43:03Z
dc.date.issued2012-07-30
dc.description.abstractWe consider the problem of estimating the Pickands dependence function corresponding to a multivariate distribution. A minimum distance estimator is proposed which is based on a L2-distance between the logarithms of the empirical and an extreme-value copula. The minimizer can be expressed explicitly as a linear functional of the logarithm of the empirical copula and weak convergence of the corresponding process on the simplex is proved. In contrast to other procedures which have recently been proposed in the literature for the nonparametric estimation of a multivariate Pickands dependence function [see Zhang et al. (2008) and Gudendorf and Segers (2011)], the estimators constructed in this paper do not require knowledge of the marginal distributions and are an alternative to the method which has recently been suggested by Gudendorf and Segers (2012). Moreover, the minimum distance approach allows the construction of a simple test for the hypothesis of a multivariate extreme-value copula, which is consistent against a broad class of alternatives. The finite-sample properties of the estimator and a multiplier bootstrap version of the test are investigated by means of a simulation study.en
dc.identifier.urihttp://hdl.handle.net/2003/29567
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-4904
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;31/2012
dc.subjectcopula processen
dc.subjectextreme-value copulaen
dc.subjectminimum distance estimationen
dc.subjectPickands dependence functionen
dc.subjecttest for extreme-value dependenceen
dc.subjectweak convergenceen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleMinimum distance estimation of Pickands dependence function for multivariate distributionsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_3112_SFB823_Berghaus_Bücher_Dette.pdf
Size:
346.61 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: