Homogenization of the full compressible Navier-Stokes-Fourier system in randomly perforated domains
dc.contributor.author | Oschmann, Florian | |
dc.date.accessioned | 2023-06-12T12:04:53Z | |
dc.date.available | 2023-06-12T12:04:53Z | |
dc.date.issued | 2022-03-26 | |
dc.description.abstract | We consider the homogenization of the compressible Navier-Stokes-Fourier equations in a randomly perforated domain in R3. Assuming that the particle size scales like ε^α, where ε>0 is their mutual distance and α>3, we show that in the limit ε→0, the velocity, density, and temperature converge to a solution of the same system. We follow the methods of Lu and Pokorný [https://doi.org/10.1016/j.jde.2020.10.032] and Pokorný and Skříšovský [https://doi.org/10.1007/s41808-021-00124-x] where they considered the full system in periodically perforated domains. | en |
dc.identifier.uri | http://hdl.handle.net/2003/41736 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-23579 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Journal of mathematical fluid mechanics;24(2) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de |
dc.subject | Homogenization in perforated domains | en |
dc.subject | Navier-Stokes-Fourier system | en |
dc.subject | Brinkman law | en |
dc.subject.ddc | 510 | |
dc.title | Homogenization of the full compressible Navier-Stokes-Fourier system in randomly perforated domains | en |
dc.type | Text | de |
dc.type.publicationtype | article | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | de |
eldorado.secondarypublication.primarycitation | Oschmann, F. Homogenization of the Full Compressible Navier-Stokes-Fourier System in Randomly Perforated Domains. J. Math. Fluid Mech. 24, 45 (2022). https://doi.org/10.1007/s00021-022-00679-2 | de |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1007/s00021-022-00679-2 | de |