Estimating the generalization performance of a SVM efficiently

dc.contributor.authorJoachims, Thorstende
dc.date.accessioned2004-12-06T12:53:47Z
dc.date.available2004-12-06T12:53:47Z
dc.date.created1999de
dc.date.issued2000-01-12de
dc.description.abstractThis paper proposes and analyzes an approach to estimating the generalization performance of a support vector machine (SVM) for text classification. Without any computation intensive resampling, the new estimators are computationally much more efficient than cross-validation or bootstrap, since they can be computed immediately from the form of the hypothesis returned by the SVM. Moreover, the estimators delevoped here address the special performance measures needed for text classification. While they can be used to estimate error rate, one can also estimate the recall, the precision, and the F1. A theoretical analysis and experiments on three text classification collections show that the new method can effectively estimate the performance of SVM text classifiers in a very efficient way. The paper is written in English.en
dc.format.extent381828 bytes
dc.format.extent986830 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.issn0943-4135de
dc.identifier.urihttp://hdl.handle.net/2003/2601
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5102
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesForschungsberichte des Lehrstuhls VIII, Fachbereich Informatik der Universität Dortmund ; 25de
dc.subject.ddc004de
dc.titleEstimating the generalization performance of a SVM efficientlyen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
report25.pdf
Size:
372.88 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
report25.ps
Size:
963.7 KB
Format:
Postscript Files