Optimal designs for trigonometric regression models

dc.contributor.authorDette, Holgerde
dc.contributor.authorMelas, Viatcheslav B.de
dc.contributor.authorShpilev, Petrde
dc.date.accessioned2009-10-29T10:16:40Z
dc.date.available2009-10-29T10:16:40Z
dc.date.issued2009-07-04de
dc.description.abstractIn the common Fourier regression model we investigate the optimal design problem for the estimation of linear combinations of the coefficients, where the explanatory variable varies in the interval [-pi; pi]. In a recent paper Dette et. al. (2008) determined optimal designs for estimating certain pairs of the coefficients in the model. The optimal design problem corresponds to a linear optimality criterion for a specific matrix L. In the present paper these results are extended to more general matrices L. By our results the optimal design problem for a Fourier regression of large degree can be reduced to a design problem in a model of lower degree, which allows the determination of L-optimal designs in many important cases. The results are illustrated by several examples.en
dc.identifier.urihttp://hdl.handle.net/2003/26488
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-813
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823; 14/2009de
dc.subjectequivalence theoremen
dc.subjectFourier regression modelsen
dc.subjectL-optimal designsen
dc.subjectparameter subsetsen
dc.subject.ddc310de
dc.subject.ddc330de
dc.subject.ddc620de
dc.titleOptimal designs for trigonometric regression modelsen
dc.typeTextde
dc.type.publicationtypereportde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
014.pdf
Size:
268.63 KB
Format:
Adobe Portable Document Format
Description:
DNB