Optimal designs for trigonometric regression models
dc.contributor.author | Dette, Holger | de |
dc.contributor.author | Melas, Viatcheslav B. | de |
dc.contributor.author | Shpilev, Petr | de |
dc.date.accessioned | 2009-10-29T10:16:40Z | |
dc.date.available | 2009-10-29T10:16:40Z | |
dc.date.issued | 2009-07-04 | de |
dc.description.abstract | In the common Fourier regression model we investigate the optimal design problem for the estimation of linear combinations of the coefficients, where the explanatory variable varies in the interval [-pi; pi]. In a recent paper Dette et. al. (2008) determined optimal designs for estimating certain pairs of the coefficients in the model. The optimal design problem corresponds to a linear optimality criterion for a specific matrix L. In the present paper these results are extended to more general matrices L. By our results the optimal design problem for a Fourier regression of large degree can be reduced to a design problem in a model of lower degree, which allows the determination of L-optimal designs in many important cases. The results are illustrated by several examples. | en |
dc.identifier.uri | http://hdl.handle.net/2003/26488 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-813 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB 823; 14/2009 | de |
dc.subject | equivalence theorem | en |
dc.subject | Fourier regression models | en |
dc.subject | L-optimal designs | en |
dc.subject | parameter subsets | en |
dc.subject.ddc | 310 | de |
dc.subject.ddc | 330 | de |
dc.subject.ddc | 620 | de |
dc.title | Optimal designs for trigonometric regression models | en |
dc.type | Text | de |
dc.type.publicationtype | report | de |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1