The full rank condition for sparse random matrices
| dc.contributor.author | Coja-Oghlan, Amin | |
| dc.contributor.author | Gao, Pu | |
| dc.contributor.author | Hahn-Klimroth, Max | |
| dc.contributor.author | Lee, Joon | |
| dc.contributor.author | Müller, Noela | |
| dc.contributor.author | Rolvien, Maurice | |
| dc.date.accessioned | 2025-09-15T12:30:21Z | |
| dc.date.available | 2025-09-15T12:30:21Z | |
| dc.date.issued | 2024-09-20 | |
| dc.description.abstract | We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries in the rows and columns having full row rank. The result covers both matrices over finite fields with independent non-zero entries and {0,1}-matrices over the rationals. The sufficient condition is generally necessary as well. | en |
| dc.identifier.uri | http://hdl.handle.net/2003/43969 | |
| dc.language.iso | en | |
| dc.relation.ispartofseries | Combinatorics, probability & computing; 33(5) | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Random matrix | en |
| dc.subject | Rank | en |
| dc.subject.ddc | 004 | |
| dc.title | The full rank condition for sparse random matrices | en |
| dc.type | Text | |
| dc.type.publicationtype | Article | |
| dcterms.accessRights | open access | |
| eldorado.dnb.deposit | true | |
| eldorado.doi.register | false | |
| eldorado.secondarypublication | true | |
| eldorado.secondarypublication.primarycitation | Coja-Oghlan A, Gao P, Hahn-Klimroth M, Lee J, Müller N, Rolvien M. The full rank condition for sparse random matrices. Combinatorics, Probability and Computing. 2024;33(5):643-707. doi:10.1017/S096354832400021X | |
| eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1017/S096354832400021X |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- the-full-rank-condition-for-sparse-random-matrices.pdf
- Size:
- 1.31 MB
- Format:
- Adobe Portable Document Format
- Description:
- DNB
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.82 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
