A Note on the Maximization of Matrix Valued Hankel Determinants with Applications

dc.contributor.authorDette, Holgerde
dc.contributor.authorStudden, W. J.de
dc.date.accessioned2004-12-06T18:40:01Z
dc.date.available2004-12-06T18:40:01Z
dc.date.issued2003de
dc.description.abstractIn this note we consider the problem of maximizing the determinant of moment matrices of matrix measures. The maximizing matrix measure can be characterized explicitly by having equal (matrix valued) weights at the zeros of classical (one dimensional) orthogonal polynomials. The results generalize classical work of Schoenberg (1959) to the case of matrix measures. As a statistical application we consider several optimal design problems in linear models, which generalize the classical weighing design problems.en
dc.format.extent147548 bytes
dc.format.extent297262 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4936
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15079
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectmatrix measuresen
dc.subjectHankel matrixen
dc.subjectorthogonal polynomialsen
dc.subjectspring balance weighing designsen
dc.subjectapproximate optimal designsen
dc.subject.ddc310de
dc.titleA Note on the Maximization of Matrix Valued Hankel Determinants with Applicationsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
09_03.pdf
Size:
144.09 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr09-03.ps
Size:
290.29 KB
Format:
Postscript Files