Optimal Elevator Group Control by Evolution Strategies

dc.contributor.authorBeielstein, Thomasde
dc.contributor.authorEwald, Claus-Peterde
dc.contributor.authorMarkon, Sandorde
dc.date.accessioned2004-12-07T08:21:25Z
dc.date.available2004-12-07T08:21:25Z
dc.date.created2003de
dc.date.issued2003-12-23de
dc.description.abstractEfficient elevator group control is important for the operation of large buildings. Recent developments in this field include the use of fuzzy logic and neural networks. This paper summarizes the development of an evolution strategy (ES) that is capable of optimizing the neuro-controller of an elevator group controller. It extends the results that were based on a simplified elevator group controller simulator. A threshold selection technique is presented as a method to cope with noisy fitness function values during the optimization run. Experimental design techniques are used to analyze first experimental results.en
dc.format.extent502784 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/5436
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15353
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 146de
dc.subject.ddc004de
dc.titleOptimal Elevator Group Control by Evolution Strategiesen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
146.pdf
Size:
491 KB
Format:
Adobe Portable Document Format
Description:
DNB