Regularization and Model Selection in the Context of Density Estimation

dc.contributor.authorKreutz, Martinde
dc.contributor.authorReimetz, Anja M.de
dc.contributor.authorSeelen, Werner vonde
dc.contributor.authorSendhoff, Bernhardde
dc.contributor.authorWeihs, Clausde
dc.date.accessioned2004-12-06T18:40:37Z
dc.date.available2004-12-06T18:40:37Z
dc.date.issued1999de
dc.description.abstractWe propose a new information theoretically based optimization criterion for the estimation of mixture density models and compare it with other methods based on maximum likelihood and maximum a posterio estimation. For the optimization, we employ an evolutionary algorithm which estimates both structure and parameters of the model. Experimental results show that the chosen approach compares favourably with other methods for estimation problems with few sample data as well as for problems where the underlying density is non-stationary.en
dc.format.extent504819 bytes
dc.format.extent7682052 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4962
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5519
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subject.ddc310de
dc.titleRegularization and Model Selection in the Context of Density Estimationen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
99_27.pdf
Size:
492.99 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr27-99.ps
Size:
7.33 MB
Format:
Postscript Files