Prediction in locally stationary time series

dc.contributor.authorDette, Holger
dc.contributor.authorWu, Weichi
dc.date.accessioned2020-01-17T15:20:09Z
dc.date.available2020-01-17T15:20:09Z
dc.date.issued2020
dc.description.abstractWe develop an estimator for the high-dimensional covariance matrix of a locally stationary process with a smoothly varying trend and use this statistic to derive consistent predictors in non-stationary time series. In contrast to the currently available methods for this problem the predictor developed here does not rely on fitting an autoregressive model and does not require a vanishing trend. The finite sample properties of the new methodology are illustrated by means of a simulation study and a data example.en
dc.identifier.urihttp://hdl.handle.net/2003/38530
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20449
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;1/2020en
dc.subjectlocally stationary time seriesen
dc.subjecthigh dimensional auto-covarianceen
dc.subjectmatricesen
dc.subjectpredictionen
dc.subjectlocal linear regressionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titlePrediction in locally stationary time seriesen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0120_SFB823_Dette_Wu.pdf
Size:
542.89 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: