Bayesian and Maximum Optimal Designs for Heteroscedastic Regression Models

dc.contributor.authorDette, Holgerde
dc.contributor.authorHaines, Linda M.de
dc.contributor.authorInhof, Lorens A.de
dc.date.accessioned2004-12-06T18:41:32Z
dc.date.available2004-12-06T18:41:32Z
dc.date.issued2003de
dc.description.abstractThe problem of constructing standardized maximin D-optimal designs for weighted polynomial regression models is addressed. In particular it is shown that, by following the broad approach to the construction of maximin designs introduced recently by Dette, Haines and Imhof (2003), such designs can be obtained as weak limits of the corresponding Bayesian Φ_q-optimal designs. The approach is illustrated for two specific weighted polynomial models and also for a particular growth model.en
dc.format.extent214275 bytes
dc.format.extent394243 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4998
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-2697
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectBayesian designen
dc.subjectD-optimal designen
dc.subjectmaximin designen
dc.subjectpolynomial regressionen
dc.subjectstandardized criterionen
dc.subject.ddc310de
dc.titleBayesian and Maximum Optimal Designs for Heteroscedastic Regression Modelsde
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
36_03.pdf
Size:
209.25 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr36-03.ps
Size:
385 KB
Format:
Postscript Files