Methods and Algorithms for Robust Filtering

dc.contributor.authorFried, Rolandde
dc.contributor.authorGather, Ursulade
dc.date.accessioned2004-12-06T18:39:35Z
dc.date.available2004-12-06T18:39:35Z
dc.date.issued2004de
dc.description.abstractWe discuss filtering procedures for robust extraction of a signal from noisy time series. Moving averages and running medians are standard methods for this, but they have shortcomings when large spikes (outliers) respectively trends occur. Modified trimmed means and linear median hybrid filters combine advantages of both approaches, but they do not completely overcome the difficulties. Improvements can be achieved by using robust regression methods, which work even in real time because of increased computational power and faster algorithms. Extending recent work we present filters for robust online signal extraction and discuss their merits for preserving trends, abrupt shifts and extremes and for the removal of spikes.en
dc.format.extent125547 bytes
dc.format.extent284759 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4915
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-6821
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectsignal extractionen
dc.subjectdriften
dc.subjectedgeen
dc.subjectoutlieren
dc.subjectupdate algorithmen
dc.subject.ddc310de
dc.titleMethods and Algorithms for Robust Filteringen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
44_04.pdf
Size:
122.6 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
44_04.ps
Size:
278.08 KB
Format:
Postscript Files