Polariton condensates in a semiconductor microcavity influenced by all-optical methods

dc.contributor.advisorBayer, Manfred
dc.contributor.authorWishahi, Franziska
dc.contributor.refereeWeis, Thomas
dc.date.accepted2013-08-08
dc.date.accessioned2013-09-19T12:16:01Z
dc.date.available2013-09-19T12:16:01Z
dc.date.issued2013-09-19
dc.description.abstractIt is hard to picture today's society without fast data exchange, in private and business matters. This revolution in telecommunication is to a large extent related to the massive utilization of optical fibers as a tool for conveying information over large distances. The interface between optical data transmission and electronic circuits are the so-called optoelectronic devices such as semiconductor lasers. As a next step, it could be desirable to switch from electronic to optical data processing. Polariton condensates could be perfect candidates for a realization of optical logic gates. Their photonic nature provides a high speed of exchanging information and their excitonic character opens the field to nonlinear switching processes due to Coulomb interactions. The future task is it to fully control and manipulate the properties of the polariton condensate. In this thesis, the formation of an exciton-polariton condensate in a semiconductor microcavity was studied with an emphasis on all-optical methods to influence and control the properties of the polariton condensate. The experimental methods range from excitation spot shaping using a spatial-light-modulator to the perturbation of a polariton condensate with a nonresonant, pulsed laser beam.en
dc.identifier.urihttp://hdl.handle.net/2003/30604
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14866
dc.language.isoende
dc.subjectBose-Einstein condensateen
dc.subjectPolaritonen
dc.subjectSemiconductor microcavityen
dc.subject.ddc530
dc.titlePolariton condensates in a semiconductor microcavity influenced by all-optical methodsen
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissertation.pdf
Size:
39.54 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: