A completely automated optimization strategy for global minimum-variance portfolios based on a new test for structural breaks

Loading...
Thumbnail Image

Date

2013-05-13

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We present a completely automated optimization strategy which combines the classical Markowitz mean-variance portfolio theory with a recently proposed test for structural breaks in co- variance matrices. With respect to equity portfolios, global minimum-variance optimizations, which base solely on the covariance matrix, yield considerable results in previous studies. However, nancial assets cannot be assumed to have a constant covariance matrix over longer periods of time. Hence, we estimate the covariance matrix of the assets by respecting potential change points. The resulting approach resolves issues like timing or determining a sample for parameter estimation. Moreover, we apply the approach to two datasets and compare the results to relevant benchmark techniques by means of an out-of-sample study. It is shown that the new approach outperforms equally weighted portfolios and plain minimum-variance portfolios on average.

Description

Table of contents

Keywords

fluctuation test, portfolio optimization, structural break

Citation