Statistical Methods in Intensive Care Online Monitoring

dc.contributor.authorBauer, Marcusde
dc.contributor.authorFried, Rolandde
dc.contributor.authorGather, Ursulade
dc.contributor.authorImhoff, Michaelde
dc.date.accessioned2004-12-06T18:42:43Z
dc.date.available2004-12-06T18:42:43Z
dc.date.issued2000de
dc.description.abstractIntelligent alarm systems are needed for adequate bedside decision support in critical care. Clinical information systems acquire physiological variables online in short time intervals. To identify complications as well as therapeutic effects procedures for rapid classiffication of the current state of the patient have to be developed. Detection of characteristic patterns in the data can be accomplished by statistical time series analysis. In view of the high dimension of the data statistical methods for dimension reduction should be used in advance. We discuss the potential of statistical techniques for online monitoring.en
dc.format.extent262133 bytes
dc.format.extent490816 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5038
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15129
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subject.ddc310de
dc.titleStatistical Methods in Intensive Care Online Monitoringen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access
eldorado.dnb.deposittrue

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2000_33.pdf
Size:
255.99 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr33-00.ps
Size:
479.31 KB
Format:
Postscript Files