T-optimal discriminating designs for Fourier regression models
dc.contributor.author | Dette, Holger | |
dc.contributor.author | Melas, Viatcheslav B. | |
dc.contributor.author | Shpilev, Petr | |
dc.date.accessioned | 2016-01-06T08:26:42Z | |
dc.date.available | 2016-01-06T08:26:42Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In this paper we consider the problem of constructing T-optimal discriminating designs for Fourier regression models. We provide explicit solutions of the optimal design problem for discriminating between two Fourier regression models, which differ by at most three trigonometric functions. In general, the T-optimal discriminating design depends in a complicated way on the parameters of the larger model, and for special configurations of the parameters T-optimal discriminating designs can be found analytically. Moreover, we also study this dependence in the remaining cases by calculating the optimal designs numerically. In particular, it is demonstrated that D- and Ds-optimal designs have rather low efficiencies with respect to the T-optimality criterion. | en |
dc.identifier.uri | http://hdl.handle.net/2003/34437 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-16493 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB 823;49/2015 | en |
dc.subject | T-optimal design | en |
dc.subject | trigonometric models | en |
dc.subject | Chebyshev polynomial | en |
dc.subject | linear optimality criteria | en |
dc.subject | model discrimination | en |
dc.subject.ddc | 310 | |
dc.subject.ddc | 330 | |
dc.subject.ddc | 620 | |
dc.title | T-optimal discriminating designs for Fourier regression models | en |
dc.type | Text | de |
dc.type.publicationtype | workingPaper | de |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- DP_4915_SFB823_Dette_Melas_Shpilev.pdf
- Size:
- 862.62 KB
- Format:
- Adobe Portable Document Format
- Description:
- DNB
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.12 KB
- Format:
- Item-specific license agreed upon to submission
- Description: