Interactive graph drawing with constraints
Loading...
Date
2011-03-25
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis investigates the requirements for graph drawing stemming
from practical applications, and presents both theoretical as
well as practical results and approaches to handle them.
Many approaches to compute graph layouts in various drawing styles
exist, but the results are often not sufficient
for use in practice. Drawing conventions, graphical notation standards,
and user-defined requirements restrict the set of admissible
drawings. These restrictions can be formalized as constraints for the
layout computation. We investigate the requirements and give an overview
and categorization of the corresponding constraints.
Of main importance for the readability of a graph drawing is
the number of edge crossings. In case the graph is planar
it should be drawn without crossings, otherwise we should
aim to use the minimum number of crossings possible.
However, several types of constraints may impose
restrictions on the way the graph can be embedded in the plane.
These restrictions may have a strong impact on crossing minimization.
For two types of such constraints we present specific solutions
how to consider them in layout computation:
We introduce the class of so-called embedding constraints, which
restrict the order of the edges around a vertex.
For embedding constraints we describe approaches for planarity testing,
embedding, and edge insertion with the minimum number of crossings. These problems
can be solved in linear time with our approaches.
The second constraint type that we tackle are clusters. Clusters
describe a hierarchical grouping of the graph's vertices that
has to be reflected in the drawing. The complexity of the
corresponding clustered planarity testing problem for
clustered graphs is unknown so far.
We describe a technique to compute a maximum clustered planar
subgraph of a clustered graph. Our solution
is based on an Integer Linear Program (ILP) formulation and includes
also the first practical clustered planarity test for general clustered
graphs. The resulting subgraph can be used within the first step of
the planarization approach for clustered graphs.
In addition, we describe how to improve the performance
for pure clustered planarity testing by implying a branch-and-price
approach.
Large and complex graphs nowadays arise in many application domains.
These graphs require interaction
and navigation techniques to allow exploration of the underlying data.
The corresponding concepts are presented and solutions for three
practical applications are proposed: First, we describe Scaffold Hunter,
a tool for the exploration of chemical space. We show how to use
a hierarchical classification of molecules for the visual navigation in chemical space.
The resulting visualization is embedded into an interactive environment
that allows visual analysis of chemical compound databases.
Finally, two interactive
visualization approaches for two types of biological networks, protein-domain
networks and residue interaction networks, are presented.
In zahlreichen Anwendungsgebieten werden Informationen als Graphen modelliert und mithilfe dieser Graphen visualisiert. Eine übersichtliche Darstellung hilft bei der Analyse und unterstützt das Verständnis bei der Präsentation von Informationen mittels graph-basierter Diagramme. Neben allgemeinen ästhetischen Kriterien bestehen für eine solche Darstellung Anforderungen, die sich aus der Charakteristik der Daten, etablierten Darstellungskonventionen und der konkreten Fragestellung ergeben. Zusätzlich ist häufig eine individuelle Anpassung der Darstellung durch den Anwender gewünscht. Diese Anforderungen können mithilfe von Nebenbedingungen für die Berechnung eines Layouts formuliert werden. Trotz einer Vielzahl unterschiedlicher Anforderungen aus zahlreichen Anwendungsgebieten können die meisten Anforderungen über einige generische Nebenbedingungen formuliert werden. In dieser Arbeit untersuchen wir die Anforderungen aus der Praxis und beschreiben eine Zuordnung zu Nebenbedingungen für die Layoutberechnung. Wir geben eine Übersicht über den aktuellen Stand der Behandlung von Nebenbedingungen beim Zeichnen von Graphen und kategorisieren diese nach grundlegenden Eigenschaften. Von besonderer Wichtigkeit für die Qualität einer Darstellung ist die Anzahl der Kreuzungen. Planare Graphen sollten kreuzungsfrei gezeichnet werden, bei nicht-planaren Graphen sollte die minimale Anzahl Kreuzungen erreicht werden. Einige Nebenbedingungen beschränken jedoch die Möglichkeit, den Graph in die Ebene einzubetten. Dies kann starke Auswirkungen auf das Ergebnis der Kreuzungsminimierung haben. Zwei wichtige Typen solcher Nebenbedingungen werden in dieser Arbeit näher untersucht. Mit den Embedding Constraints führen wir eine Klasse von Nebenbedingungen ein, welche die mögliche Reihenfolge der Kanten um einen Knoten beschränken. Für diese Klasse präsentieren wir Linearzeitalgorithmen für das Testen der Planarität und das optimale Einfügen von Kanten unter Beachtung der Einbettungsbeschränkungen. Der zweite Typ von Nebenbedingungen sind Cluster, die eine hierarchische Gruppierung von Knoten vorgeben. Für das Testen der Cluster-Planarität unter solchen Nebenbedingungen ist die Komplexität bisher unbekannt. Wir beschreiben ein Verfahren, um einen maximalen Cluster-planaren Untergraphen zu berechnen. Wir nutzen dabei eine Formulierung als ganzzahliges lineares Programm sowie einen Branch-and-Cut Ansatz zur Lösung. Das Verfahren erlaubt auch die Bestimmung der Cluster-Planarität und stellt damit den ersten praktischen Ansatz zum Testen allgemeiner Clustergraphen dar. Zusätzlich beschreiben wir eine Verbesserung für den Fall, dass lediglich Cluster-Planarität getestet werden muss, der maximale Cluster-planare Untergraph aber nicht von Interesse ist. Für dieses Szenario geben wir eine vereinfachte Formulierung und präsentieren ein Lösungsverfahren, das auf einem Branch-and-Price Ansatz beruht. In der Praxis müssen häufig sehr große oder komplexe Graphen untersucht werden. Dazu werden entsprechende Interaktions- und Navigationsmethoden benötigt. Wir beschreiben die entsprechenden Konzepte und stellen Lösungen für drei Anwendungsbereiche vor: Zunächst beschreiben wir Scaffold Hunter, eine Software zur Navigation im chemischen Strukturraum. Scaffold Hunter benutzt eine hierarchische Klassifikation von Molekülen als Grundlage für die visuelle Navigation. Die Visualisierung ist eingebettet in eine interaktive Oberfläche die eine visuelle Analyse von chemischen Strukturdatenbanken erlaubt. Für zwei Typen von biologischen Netzwerken, Protein-Domänen Netzwerke und Residue-Interaktionsnetzwerke, stellen wir Ansätze für die interaktive Visualisierung dar. Die entsprechenden Layoutverfahren unterliegen einer Reihe von Nebenbedingungen für eine sinnvolle Darstellung.
In zahlreichen Anwendungsgebieten werden Informationen als Graphen modelliert und mithilfe dieser Graphen visualisiert. Eine übersichtliche Darstellung hilft bei der Analyse und unterstützt das Verständnis bei der Präsentation von Informationen mittels graph-basierter Diagramme. Neben allgemeinen ästhetischen Kriterien bestehen für eine solche Darstellung Anforderungen, die sich aus der Charakteristik der Daten, etablierten Darstellungskonventionen und der konkreten Fragestellung ergeben. Zusätzlich ist häufig eine individuelle Anpassung der Darstellung durch den Anwender gewünscht. Diese Anforderungen können mithilfe von Nebenbedingungen für die Berechnung eines Layouts formuliert werden. Trotz einer Vielzahl unterschiedlicher Anforderungen aus zahlreichen Anwendungsgebieten können die meisten Anforderungen über einige generische Nebenbedingungen formuliert werden. In dieser Arbeit untersuchen wir die Anforderungen aus der Praxis und beschreiben eine Zuordnung zu Nebenbedingungen für die Layoutberechnung. Wir geben eine Übersicht über den aktuellen Stand der Behandlung von Nebenbedingungen beim Zeichnen von Graphen und kategorisieren diese nach grundlegenden Eigenschaften. Von besonderer Wichtigkeit für die Qualität einer Darstellung ist die Anzahl der Kreuzungen. Planare Graphen sollten kreuzungsfrei gezeichnet werden, bei nicht-planaren Graphen sollte die minimale Anzahl Kreuzungen erreicht werden. Einige Nebenbedingungen beschränken jedoch die Möglichkeit, den Graph in die Ebene einzubetten. Dies kann starke Auswirkungen auf das Ergebnis der Kreuzungsminimierung haben. Zwei wichtige Typen solcher Nebenbedingungen werden in dieser Arbeit näher untersucht. Mit den Embedding Constraints führen wir eine Klasse von Nebenbedingungen ein, welche die mögliche Reihenfolge der Kanten um einen Knoten beschränken. Für diese Klasse präsentieren wir Linearzeitalgorithmen für das Testen der Planarität und das optimale Einfügen von Kanten unter Beachtung der Einbettungsbeschränkungen. Der zweite Typ von Nebenbedingungen sind Cluster, die eine hierarchische Gruppierung von Knoten vorgeben. Für das Testen der Cluster-Planarität unter solchen Nebenbedingungen ist die Komplexität bisher unbekannt. Wir beschreiben ein Verfahren, um einen maximalen Cluster-planaren Untergraphen zu berechnen. Wir nutzen dabei eine Formulierung als ganzzahliges lineares Programm sowie einen Branch-and-Cut Ansatz zur Lösung. Das Verfahren erlaubt auch die Bestimmung der Cluster-Planarität und stellt damit den ersten praktischen Ansatz zum Testen allgemeiner Clustergraphen dar. Zusätzlich beschreiben wir eine Verbesserung für den Fall, dass lediglich Cluster-Planarität getestet werden muss, der maximale Cluster-planare Untergraph aber nicht von Interesse ist. Für dieses Szenario geben wir eine vereinfachte Formulierung und präsentieren ein Lösungsverfahren, das auf einem Branch-and-Price Ansatz beruht. In der Praxis müssen häufig sehr große oder komplexe Graphen untersucht werden. Dazu werden entsprechende Interaktions- und Navigationsmethoden benötigt. Wir beschreiben die entsprechenden Konzepte und stellen Lösungen für drei Anwendungsbereiche vor: Zunächst beschreiben wir Scaffold Hunter, eine Software zur Navigation im chemischen Strukturraum. Scaffold Hunter benutzt eine hierarchische Klassifikation von Molekülen als Grundlage für die visuelle Navigation. Die Visualisierung ist eingebettet in eine interaktive Oberfläche die eine visuelle Analyse von chemischen Strukturdatenbanken erlaubt. Für zwei Typen von biologischen Netzwerken, Protein-Domänen Netzwerke und Residue-Interaktionsnetzwerke, stellen wir Ansätze für die interaktive Visualisierung dar. Die entsprechenden Layoutverfahren unterliegen einer Reihe von Nebenbedingungen für eine sinnvolle Darstellung.
Description
Table of contents
Keywords
Interactive graph drawing, Drawing constraints, Planarity, Planarization, Graph embedding, Embedding constraints, Clustered planarity, Graph drawing applications, Scaffold Hunter