Abelian theorems for stochastic volatility models with application to the estimation of jump activity of volatility

dc.contributor.authorBelomestny, Denis
dc.contributor.authorPanov, Vladimir
dc.date.accessioned2011-11-23T10:12:16Z
dc.date.available2011-11-23T10:12:16Z
dc.date.issued2011-11-23
dc.description.abstractIn this paper, we prove a kind of Abelian theorem for a class of stochastic volatility models (X; V ); where both the state process X and the volatility process V may have jumps. Our results relate the asymptotic behavior of the characteristic function of X for some > 0 in a stationary regime to the Blumenthal-Getoor indexes of the Levy processes driving the jumps in X and V . The results obtained are used to construct consistent estimators for the above Blumenthal-Getoor indexes based on low-frequency observations of the state process X. We derive the convergence rates for the corresponding estimator and show that these rates can not be improved in general.en
dc.identifier.urihttp://hdl.handle.net/2003/29199
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-3036
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;45/2011
dc.subjectAbelian theoremen
dc.subjectaffine stochastic volatility modelen
dc.subjectBlumenthal-Getoor indexen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleAbelian theorems for stochastic volatility models with application to the estimation of jump activity of volatilityen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.dnb.deposittruede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_4511_SFB823_Belomestny_Panov.pdf
Size:
402.4 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: