Efficient implementations of the quantum Fourier transform
No Thumbnail Available
Date
2005-06
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
World Scientific
Abstract
The Quantum Fourier transform (QFT) is a key ingredient in most quantum algorithms. We have compared various spin-based quantum computing schemes to implement the QFT from the point of view of their actual time-costs and the accuracy of the implementation. We focus here on an interesting decomposition of the QFT as a product of the non-selective Hadamard transformation followed by multiqubit gates corresponding to square- and higher-roots of controlled-NOT gates. This decomposition requires only O(n) operations and is thus linear in the number of qubits n. The schemes were implemented on a two-qubit NMR quantum information processor and the resultant density matrices reconstructed using standard quantum state tomography techniques. Their experimental fidelities have been measured and compared.
Description
Table of contents
Keywords
Citation
Dorai, Kavita; Suter, Dieter: Efficient implementations of the quantum Fourier transform : an experimental perspective. In: International Journal of Quantum Information Nr. 2, Jg. 3(2005), S. 413-424.