Classification Method Performance in High Dimensions

dc.contributor.authorWeihs, Claus
dc.contributor.authorKassner, Tobias
dc.date.accessioned2018-04-17T09:04:31Z
dc.date.available2018-04-17T09:04:31Z
dc.date.issued2018-04-13
dc.description.abstractWe discuss standard classification methods for high-dimensional data and a small number of observations. By means of designed simulations illustrating the practical relevance of theoretical results we show that in the 2-class case the following rules of thumb should be followed in such a situation to avoid the worst error rate, namely the probability π1 of the smaller class: Avoid “complicated” classifiers: The independence rule (ir) might be adequate, the support vector machine (svm) should only be considered as an expensive alternative, which is additionally sensitive to noise factors. From the outset, look for stochastically independent dimensions and balanced classes. Only take into account features which influence class separation sufficiently. Variable selection might help, though filters might be too rough. Compare your result with the result of the data independent rule “Always predict the larger class”.en
dc.identifier.urihttp://hdl.handle.net/2003/36834
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-18835
dc.language.isoende
dc.relation.ispartofseriesForschungsberichte;2
dc.subjectClassificationen
dc.subjectHigh Dimensionsen
dc.subjectPerformanceen
dc.subject.ddc310
dc.titleClassification Method Performance in High Dimensionsen
dc.typeTextde
dc.type.publicationtypereportde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Technical Report 2 2018.pdf
Size:
783.33 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: