Optimal designs for testing the functional form of a regression via nonparametric estimation techniques

dc.contributor.authorBiedermann, Stefaniede
dc.contributor.authorDette, Holgerde
dc.date.accessioned2004-12-06T18:43:10Z
dc.date.available2004-12-06T18:43:10Z
dc.date.issued2000de
dc.description.abstractFor the problem of checking linearity in a heteroscedastic nonparametric regression model under a fixed design assumption we study maximin designs which maximize the minimum power of a nonparametric test over a broad class of alternatives from the assumed linear regression model. It is demonstrated that the optimal design depends sensitively on the used estimation technique (i.e. weighted or ordinary least squares) and on an inner product used in the definiton of the class of alternatives. Our results extend and put recent findings of Wiens (1991) in a new light, who established the maximin optimality of the uniform design for lack-of-fit tests in homoscedastic multiple linear regression models.en
dc.format.extent196936 bytes
dc.format.extent210601 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5051
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5532
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectD1 -optimalityen
dc.subjectgoodness-of-fit testen
dc.subjectmaximin optimalityen
dc.subjectoptimal designen
dc.subjectweighted least squaresen
dc.subject.ddc310de
dc.titleOptimal designs for testing the functional form of a regression via nonparametric estimation techniquesen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2000_41.pdf
Size:
205.67 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr41-00.ps
Size:
192.32 KB
Format:
Postscript Files