KMC/EDAM: A new approach for the visualization of K-Means Clustering results
dc.contributor.author | Luebke, Karsten | de |
dc.contributor.author | Raabe, Nils | de |
dc.contributor.author | Weihs, Claus | de |
dc.date.accessioned | 2005-01-31T08:15:02Z | |
dc.date.available | 2005-01-31T08:15:02Z | |
dc.date.issued | 2004 | de |
dc.description.abstract | In this work we introduce a method for classification and visualization. In contrast to simultaneous methods like e.g. Kohonen SOM this new approach, called KMC/EDAM, runs through two stages. In the first stage the data is clustered by classical methods like K-means clustering. In the second stage the centroids of the obtained clusters are visualized in a fixed target space which is directly comparable to that of SOM. | en |
dc.format.extent | 231705 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/2003/20079 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-5317 | |
dc.language.iso | en | de |
dc.publisher | Universität Dortmund | de |
dc.subject.ddc | 310 | de |
dc.title | KMC/EDAM: A new approach for the visualization of K-Means Clustering results | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1