KMC/EDAM: A new approach for the visualization of K-Means Clustering results

dc.contributor.authorLuebke, Karstende
dc.contributor.authorRaabe, Nilsde
dc.contributor.authorWeihs, Clausde
dc.date.accessioned2005-01-31T08:15:02Z
dc.date.available2005-01-31T08:15:02Z
dc.date.issued2004de
dc.description.abstractIn this work we introduce a method for classification and visualization. In contrast to simultaneous methods like e.g. Kohonen SOM this new approach, called KMC/EDAM, runs through two stages. In the first stage the data is clustered by classical methods like K-means clustering. In the second stage the centroids of the obtained clusters are visualized in a fixed target space which is directly comparable to that of SOM.en
dc.format.extent231705 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/20079
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5317
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.subject.ddc310de
dc.titleKMC/EDAM: A new approach for the visualization of K-Means Clustering resultsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
65_04.pdf
Size:
226.27 KB
Format:
Adobe Portable Document Format
Description:
DNB