Homogenization of plasticity equations with two-scale convergence methods

dc.contributor.authorSchweizer, Ben
dc.contributor.authorVeneroni, M.
dc.date.accessioned2013-10-09T12:27:30Z
dc.date.available2013-10-09T12:27:30Z
dc.date.issued2013-10-09
dc.description.abstractWe investigate the deformation of heterogeneous plastic materials. The model uses internal variables and kinematic hardening, elastic and plastic strain are used in an infinitesimal strain theory. For periodic material properties with periodicity length scale n > 0, we obtain the limiting system as n -> 0. The limiting two-scale plasticity model coincides with well-known effective models. Our direct approach relies on abstract tools from two-scale convergence (regarding convex functionals and monotone operators) and on higher order estimates for solution sequences.en
dc.identifier.urihttp://hdl.handle.net/2003/31083
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5601
dc.language.isoen
dc.subjectconvex analysisen
dc.subjecthomogenizationen
dc.subjectplasticityen
dc.subjecttwo-scale convergenceen
dc.subject.ddc610
dc.titleHomogenization of plasticity equations with two-scale convergence methodsen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematicalPreprint-2013-12.pdf
Size:
545.64 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
952 B
Format:
Item-specific license agreed upon to submission
Description: