Nonparametric IV regression with an Archimedean dependence structure

dc.contributor.authorvan Kampen, Maarten
dc.date.accessioned2016-08-01T10:28:58Z
dc.date.available2016-08-01T10:28:58Z
dc.date.issued2016
dc.description.abstractThis paper provides a characterization of the completeness of a family of distributions in terms of the copula between the random variables. We give sufficient conditions for a family of Archimedean copulas to be (boundedly) complete. Some copulas are typically excluded in nonparametric IV regression since they have non-square integrable densities. We provide conditions under which we can identify the nonparametric IV regression model if the dependence structure between the regressors and instrument variables can be described by an Archimedean copula.en
dc.identifier.urihttp://hdl.handle.net/2003/35166
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17213
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;41, 2016en
dc.subjectcompletenessen
dc.subjectnonparametric IV regression modelen
dc.subjectidentificationen
dc.subjectcopulaen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleNonparametric IV regression with an Archimedean dependence structureen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_4116_SFB823_vanKampen.pdf
Size:
267.41 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: