Determination of hyper-parameters for kernel based classification and regression

dc.contributor.authorChristmann, Andreas
dc.contributor.authorLuebke, Karsten
dc.contributor.authorMarin-Galiano, Marcos
dc.contributor.authorRĂ¼ping, Stefan
dc.date.accessioned2005-11-07T11:39:49Z
dc.date.available2005-11-07T11:39:49Z
dc.date.issued2005-11-07T11:39:49Z
dc.description.abstractWe investigate methods to determine appropriate choices of the hyper-parameters for kernel based methods. Support vector classification, kernel logistic regression and support vector regression are considered. Grid search, Nelder-Mead algorithm and pattern search algorithm are used.en
dc.format.extent502994 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/21667
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14494
dc.language.isoen
dc.subjectconvex risk minimizationen
dc.subjectkernel logistic regressionen
dc.subjectstatistical machine learningen
dc.subjectsupport vector machineen
dc.subjectsupport vector regressionen
dc.subject.ddc004
dc.titleDetermination of hyper-parameters for kernel based classification and regressionen
dc.typeText
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr38-05.pdf
Size:
491.21 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Item-specific license agreed upon to submission
Description: