Optimal designs for inspection times of interval-censored data

dc.contributor.authorMalevich, Nadja
dc.contributor.authorMüller, Christine H.
dc.date.accessioned2018-10-05T12:02:35Z
dc.date.available2018-10-05T12:02:35Z
dc.date.issued2018
dc.description.abstractWe treat optimal equidistant and optimal non-equidistant inspection times for interval-censored data with exponential distribution.We provide in particular a recursive formula for calculating the optimal non-equidistant inspection times which is similar to a formula for optimal spacing of quantiles for asymptotically best linear estimates based on order statistics. This formula provides an upper bound for the standardized Fisher information which is reached for the optimal non-equidistant inspection times if the number of inspections is converging to infinity. The same upper bound is also shown for the optimal equidistant inspection times. Since optimal equidistant inspection times are easier to calculate and easier to handle in practice, we study the efficiency of optimal equidistant inspection times with respect to optimal nonequidistant inspection times. Moreover, since the optimal inspection times are only locally optimal, we provide also some results concerning maximin efficient designs.en
dc.identifier.urihttp://hdl.handle.net/2003/37137
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19133
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;20/2018
dc.subjectoptimal inspection timesen
dc.subjectmaximin effcient designsen
dc.subjectoptimal spacing of quantilesen
dc.subjectexponential distributionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.subject.rswkOptimale Versuchsplanungde
dc.subject.rswkExponentialverteilungde
dc.subject.rswkFisher-Informationde
dc.titleOptimal designs for inspection times of interval-censored dataen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2018_SFB823_Malevich_Mueller.pdf
Size:
375.87 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: