GMM estimation of the autoregressive parameter in a spatial autoregressive error model using regression residuals

dc.contributor.authorArnold, Matthias
dc.date.accessioned2007-09-05T12:55:54Z
dc.date.available2007-09-05T12:55:54Z
dc.date.issued2007-09-05T12:55:54Z
dc.description.abstractThis paper suggests an improved GMM estimator for the autoregressive parameter of a spatial autoregressive error model by taking into account that unobservable regression disturbances are different from observable regression residuals. Although this difference decreases in large samples, it is important in small samples. Monte Carlo simulations show that the bias can be reduced by 65 − 80% compared to a GMM estimator that neglects the difference between disturbances and residuals. The mean squared error is smaller, too.en
dc.identifier.urihttp://hdl.handle.net/2003/24712
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-8890
dc.language.isoende
dc.subjectGeneralized method of moments estimatoren
dc.subjectGMM estimationen
dc.subjectRegression residualsen
dc.subjectSpatial autoregressionen
dc.subject.ddc004
dc.titleGMM estimation of the autoregressive parameter in a spatial autoregressive error model using regression residualsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_25-arnold.pdf
Size:
141.78 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: