Improving updating rules in multiplicative algorithms for computing D-optimal designs

dc.contributor.authorDette, Holger
dc.contributor.authorPepelyshev, Andrey
dc.date.accessioned2007-10-25T11:58:11Z
dc.date.available2007-10-25T11:58:11Z
dc.date.issued2007-10-25T11:58:11Z
dc.description.abstractIn this paper we discuss a class of multiplicative algorithms for computing D-optimal designs for regression models on a finite design space. We prove a monotonicity result for a sequence of determinants obtained by the iterations, and as a consequence the procedure yields a sequence of designs converging to the D-optimal design. The class of algorithms is indexed by a real parameter and contains two algorithms considered by Titterington (1976, 1978) as special cases. We provide numerical results demonstrating the efficiency of the proposed methods and discuss several extensions to other optimality criteria.en
dc.identifier.urihttp://hdl.handle.net/2003/24796
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14150
dc.language.isoende
dc.subjectD-optimal designen
dc.subjectFinite design spaceen
dc.subjectMinimal covering ellipsoiden
dc.subjectMultiplicative algorithmen
dc.subject.ddc004
dc.titleImproving updating rules in multiplicative algorithms for computing D-optimal designsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_28-Dette.pdf
Size:
165.78 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: