Influence of Axial Workpiece Positioning during Magnetic Pulse Welding of Aluminum-Steel Joints
Loading...
Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Magnetic Pulse Welding (MPW) offers a method to economically join similar and dissimilar
metals without the need for external physical or chemical binders, while avoiding the
adverse heating effects seen in many welding techniques. MPW allows for the fabrication
of joints via the harnessing of Lorentz forces, which result from discharging a current
pulse through a coil. In the process an outer piece (flyer) is accelerated onto an inner
piece (parent), and welding is achieved using propagating impact fronts. There are
several geometrical factors to be considered including the flyer-coil distance, the parentflyer
distance, as well as the axial relationship between flyer and coil (working length).
Various shapes of the front are possible and each configuration has its own advantages
and drawbacks. The goal of this work is to show not only how the aforementioned
parameters are related, but also ways to optimize front propagations, which are vital to the
welding result. This is done primarily by determining the influence of the working length of
tubular MPW specimens. It is shown that for steel-aluminum joints in the given
arrangements, three different front regimes exist, which are related to geometrical factors.
These results are especially useful to avoid seemingly favorable but nevertheless
suboptimal conditions for flyer movement that would reduce weld quality and energy
efficiency of the process.
Description
Table of contents
Keywords
Joining by Forming