Existence result for Maxwell’s equations in half-waveguides
dc.contributor.author | Lamacz-Keymling, Agnes | |
dc.contributor.author | Schubert, Tim | |
dc.contributor.author | Schweizer, Ben | |
dc.date.accessioned | 2025-02-26T11:04:34Z | |
dc.date.available | 2025-02-26T11:04:34Z | |
dc.date.issued | 2025-02-19 | |
dc.description.abstract | Maxwell’s equations are considered in a half-waveguide Ω+ := R+ × S ⊂ R3 where S ⊂ R2 is a bounded Lipschitz domain in R2. The electric permittivity ε and the magnetic permeability μ are assumed to be strictly positive and periodic outside a compact set. A standard radiation condition accompanies the equations. We give a result on existence and uniqueness in the form of a Fredholm alternative: When there is no bound state, i.e., no non-trivial solution of the homogeneous problem, then there is a unique solution for every right-hand side. | en |
dc.identifier.uri | http://hdl.handle.net/2003/43507 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-25340 | |
dc.language.iso | en | |
dc.subject | Maxwell’s equations | en |
dc.subject | half-waveguides | en |
dc.subject | time-harmonic | en |
dc.subject.ddc | 610 | |
dc.title | Existence result for Maxwell’s equations in half-waveguides | en |
dc.type | Text | de |
dc.type.publicationtype | preprint | en |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false |