Combining Model Selection Procedures for Online Prediction
Loading...
Date
1999
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universitätsbibliothek Dortmund
Abstract
Here we give a technique for online prediction that uses different model selection principles (MSP's) at different times. The central idea is that each MSP in a class is associated with a collection of models for which it is best suited so that the the data can be used to choose an MSP. Then, the MSP chosen is used with the data to choose a model, and the parameters of the model are estimated so that predictions can be made. Depending on the degree of discrepancy between the predicted values and the actual outcomes one may update the parameters within a model, reuse the MSP to rechoose the model and estimate its parameters, or start all over again rechoosing the MSP. Our main formal result is a theorem which gives conditions under which our technique performs better than always using the same MSP. We also discuss circumstances under which dropping data points may lead to better predictions.
Description
Table of contents
Keywords
prequential statistics, model selection, model mis-specification, model meta-selection