Self-Adaptation and Global Convergence : A Counter-Example

dc.contributor.authorRudolph, Günterde
dc.date.accessioned2004-12-07T08:19:59Z
dc.date.available2004-12-07T08:19:59Z
dc.date.created1999de
dc.date.issued2001-10-16de
dc.description.abstractThe self-adaptation of the mutation distribution is a distinguishing feature of evolutionary algorithms that optimize over continuous variables. It is widely recognized that self-adaptation accelerates the search for optima and enhances the ability to locate optima accurately, but it is generally unclear whether these optima are global ones or not. Here, it is proven that the probability of convergence to the global optimum is less than one in general even if the objective function is continuous.en
dc.format.extent120047 bytes
dc.format.extent91376 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5368
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15293
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 59de
dc.subject.ddc004de
dc.titleSelf-Adaptation and Global Convergence : A Counter-Exampleen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ci59.pdf
Size:
89.23 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
ci59.ps
Size:
117.23 KB
Format:
Postscript Files