Some central limit theorems for random walks associated with hypergeometric functions of type BC

dc.contributor.authorArtykov, Merdan
dc.contributor.authorVoit, Michael
dc.date.accessioned2019-08-02T13:36:58Z
dc.date.available2019-08-02T13:36:58Z
dc.date.issued2018-02
dc.description.abstractThe spherical functions of the noncompact Grassmann manifolds $G_{p,q}(\mathbb F)=G/K$ over $\mathbb F=\mathbb R, \mathbb C, \mathbb H$ with rank $q\ge1$ and dimension parameter $p>q$ are Heckman-Opdam hypergeometric functions of type BC, when the double coset spaces $G//K$ are identified with the Weyl chamber $C_q^B\subset \mathbb R^q$ of type B. The associated double coset hypergroups on $ C_q^B$ can be embedded into a continuous family of commutative hypergroups $(C_q^B,*_p)$ with $p\in[2q-1,\infty[$ associated with these hypergeometric functions by Rösler. Several limit theorems for random walks on these hypergroups were recently derived by Voit (2017). We here present further limit theorems when the time as well as $p$ tend to $\infty$. For integers $p$, this admits interpretations for group-invariant random walks on the Grassmannians $G/K$.en
dc.identifier.urihttp://hdl.handle.net/2003/38163
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20142
dc.language.isoen
dc.subjecthypergeometric functions associated with root systemsen
dc.subjectHeckman-Opdam theoryen
dc.subjectnoncompact Grassmann manifoldsen
dc.subjectspherical functionsen
dc.subjectrandom walks on symmetric spacesen
dc.subjectrandom walks on hypergroupsen
dc.subjectmoment functionsen
dc.subjectcentral limit theoremsen
dc.subjectdimension to infinityen
dc.subject.ddc610
dc.titleSome central limit theorems for random walks associated with hypergeometric functions of type BCen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint 2018-01.pdf
Size:
390.06 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: