Pseudolikelihood estimation of the stochastic frontier model

dc.contributor.authorAndor, Mark
dc.contributor.authorParmeter, Christopher
dc.date.accessioned2016-02-01T12:36:27Z
dc.date.available2016-02-01T12:36:27Z
dc.date.issued2016
dc.description.abstractStochastic frontier analysis is a popular tool to assess firm performance. Almost universally it has been applied using maximum likelihood estimation. An alternative approach, pseudolikelihood estimation, which decouples estimation of the error component structure and the production frontier, has been adopted in several advanced settings. To date, no formal comparison has yet to be conducted comparing these methods in a standard, parametric cross sectional framework. We seek to produce a comparison of these two competing methods using Monte Carlo simulations. Our results indicate that pseudolikelihood estimation enjoys almost identical performance to maximum likelihood estimation across a range of scenarios, and out performs maximum likelihood estimation in settings where the distribution of inefficiency is incorrectly specified.en
dc.identifier.urihttp://hdl.handle.net/2003/34486
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-16539
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;7, /2016en
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titlePseudolikelihood estimation of the stochastic frontier modelen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0716_SFB823_Andor_Parmeter.pdf
Size:
280.15 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: