Robust Trend Estimation for AR(1) Disturbances
Loading...
Date
2004
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universität Dortmund
Abstract
We discuss the robust estimation of a linear trend if the noise follows an autoregressive process of first order. We find the ordinary repeated median to perform well except for negative correlations. In this case it can be improved by a Prais-Winsten transformation using a robust autocorrelation estimator.
Wir behandeln die robuste Schätzung eines linearen Trends bei autoregressiven Fehlern erster Ordnung. Die Repeated Median Regression zeigt ein gutes Verhalten bei positiven Korrelationen. Bei negativen Korrelationen ist eine Verbesserung durch eine Prais-Winsten Transformation mittels eines robusten Korrelationsschätzers möglich.
Wir behandeln die robuste Schätzung eines linearen Trends bei autoregressiven Fehlern erster Ordnung. Die Repeated Median Regression zeigt ein gutes Verhalten bei positiven Korrelationen. Bei negativen Korrelationen ist eine Verbesserung durch eine Prais-Winsten Transformation mittels eines robusten Korrelationsschätzers möglich.
Description
Table of contents
Keywords
Autocorrelations, Cochrane-Orcutt Estimator, Detrending, Prais-Winsten Estimator, Robust Regression