Is double trouble? How to combine cointegration tests

dc.contributor.authorBayer, Christian
dc.contributor.authorHanck, Christoph
dc.date.accessioned2008-11-26T14:41:51Z
dc.date.available2008-11-26T14:41:51Z
dc.date.issued2008-11-26T14:41:51Z
dc.description.abstractThis paper suggests a combination procedure to exploit the imperfect correlation of cointegration tests to develop a more powerful meta test. To exemplify, we combine Engle and Granger (1987) and Johansen (1988) tests. Either of these un- derlying tests can be more powerful than the other one depending on the nature of the data-generating process. The new meta test is at least as powerful as the more powerful one of the underlying tests irrespective of the very nature of the data generating process. At the same time, our new meta test avoids the size distortion inherent in separately applying multiple tests for cointegration to the same data set.en
dc.identifier.urihttp://hdl.handle.net/2003/25873
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14131
dc.language.isoende
dc.subjectCointegrationen
dc.subjectMeta testen
dc.subjectMultiple testingen
dc.subject.ddc004
dc.titleIs double trouble? How to combine cointegration testsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr10-08-Bayer.pdf
Size:
176.61 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: