Improvement of productivity for aqueous biphasic hydroformylation of methyl 10-undecenoate

Abstract

The overall productivity of the aqueous biphasic hydroformylation of the castor oil-derived methyl 10-undecenoate is increased. To increase the reaction rate, the miscibility of water and the fatty compound is increased by addition of the green solvent 1-butanol as co-solvent. For the first time, the concentration of solvents, substrate, and product within the reaction process is experimentally examined in a biphasic system under 20 bar pressure of synthesis gas and 140 °C. A reactor to get samples of both phases is developed to determine the quarternary mixture of the reaction system presented in a four-dimensional tetrahedron diagram. With the knowledge gained about the reaction and its drivers, it is possible to increase the efficiency of the reaction process reported so far. With simultaneously high reaction rates (turn over frequency = >5000 h−1), the space–time yield of the reaction reaches values of >120 g L−1h−1 and can be improved significantly without negatively affecting catalyst leaching.

Description

Table of contents

Keywords

Green solvents, Homogeneous catalysis, Hydroformylation, Phase behavior, Water

Citation