Optimal designs for quantile regression models

dc.contributor.authorDette, Holger
dc.contributor.authorTrampisch, Matthias
dc.date.accessioned2011-08-11T13:15:24Z
dc.date.available2011-08-11T13:15:24Z
dc.date.issued2011-08-11
dc.description.abstractDespite of their importance optimal designs for quantile regression models have not been developed so far. In this paper we investigate the D-optimal design problem for the location scale nonlinear quantile regression model. We provide a necessary condition to check for the optimality of a given design and use it to determine bounds for the number of support points of locally D-optimal designs. The results are illustrated determining locally, Bayesian and standardized maximin D-optimal designs for quantile regression analysis in the Michaelis-Menten and EMAX model, where the location and the scale function are related by a known link function.en
dc.identifier.urihttp://hdl.handle.net/2003/28973
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-12655
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;26/2011
dc.subjectEMAX modelen
dc.subjectheteroscedasticityen
dc.subjectlocally optimal designen
dc.subjectMichaelis-Menten modelen
dc.subjectquantile regressionen
dc.subjectrobust designsen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleOptimal designs for quantile regression modelsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2611_SFB823_Dette_Trampisch.pdf
Size:
457.31 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: