A distributional limit theorem for the realized power variation of linear fractional stable motions

dc.contributor.authorGlaser, Sven
dc.date.accessioned2015-10-07T12:55:55Z
dc.date.available2015-10-07T12:55:55Z
dc.date.issued2015-09
dc.description.abstractIn this article we deduce a distributional theorem for the realized power variation of linear fractional stable motions. This theorem is proven by choosing the technique of subordination to reduce the proof to a Gaussian limit theorem based on Malliavin-calculus.en
dc.identifier.urihttp://hdl.handle.net/2003/34261
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-16338
dc.language.isoen
dc.subjectfractional Lévy processesen
dc.subjectlimit theoremsen
dc.subjectinfinitely divisible distributionsen
dc.subjectpower variationen
dc.subject.ddc610
dc.titleA distributional limit theorem for the realized power variation of linear fractional stable motionsen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint 2015-11.pdf
Size:
428.19 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: