Wartungsarbeiten: Am 16.01.2025 von ca. 8:00 bis 11:00 Uhr steht Ihnen das System nicht zur Verfügung. Bitte stellen Sie sich entsprechend darauf ein.gsarbeiten
 

Optimale Versuchsplanung für Model-Averaging Schätzer

dc.contributor.advisorKrämer, Walter
dc.contributor.authorAlhorn, Kira
dc.contributor.refereeDette, Holger
dc.contributor.refereeMüller, Christine
dc.date.accepted2019-07-25
dc.date.accessioned2019-07-31T06:26:17Z
dc.date.available2019-07-31T06:26:17Z
dc.date.issued2019
dc.description.abstractDurch eine optimale Planung von Versuchen kann statistische Unsicherheit verringert werden, etwa durch die Minimierung der Varianz eines Schätzers. Hierbei wird meist jedoch angenommen, dass das Modell, das den funktionalen Zusammenhang zwischen den Einflussgrößen und dem Versuchsergebnis beschreibt, bekannt ist. Wir betrachten in dieser Arbeit den Fall, dass lediglich eine Klasse möglicher Kandidatenmodelle vorliegt, welche diesen Zusammenhang beschreiben können. Wir schlagen neue Versuchsplanungskriterien zur Schätzung eines Zielparameters vor, welche diese Unsicherheit bezüglich des wahren Modells berücksichtigen. Dazu betrachten wir Model-Averaging Schätzer, welche ein gewichtetes Mittel der Schätzer in den einzelnen Kandidatenmodellen sind. Dabei gehen wir davon aus, dass die Gewichte zur Berechnung des Model-Averaging Schätzers fest sind. Model-Averaging Schätzer sind im Allgemeinen nicht unverzerrt, sodass ein optimaler Versuchsplan den mittleren quadratischen Fehler eines solchen minimiert. Zunächst betrachten wir Kandidatenmodelle, welche der Annahme der sogenannten lokalen Alternativen genügen. Diese Modelle sind jeweils verschachtelt und es ergeben sich handliche Ausdrücke für den asymptotischen mittleren quadratischen Fehler des Model-Averaging Schätzers. Wir bestimmen lokal und Bayes-optimale Versuchspläne zur Model-Averaging Schätzung eines Zielparameters und leiten notwendige Bedingungen für die Optimalität numerisch bestimmter Versuchspläne her. Die Ergebnisse werden anhand verschiedener Beispiele illustriert und wir zeigen mittels Simulationen, dass die Bayes-optimalen Versuchspläne den mittleren quadratischen Fehler des Model-Averaging Schätzers im Vergleich zu anderen Versuchsplänen um bis zu 45% reduzieren können. Wir schlagen zudem eine adaptive Vorgehensweise vor, bei der die Model-Averaging Gewichte basierend auf Ergebnissen aus vorherigen Versuchen bestimmt werden. Im Weiteren verzichten wir auf die Annahme lokaler Alternativen und leiten die asymptotische Verteilung von Model-Averaging Schätzern für nicht-verschachtelte Modelle her. Dabei muss das wahre Modell nicht unter den Kandidatenmodellen sein. Wir illustrieren die theoretischen Resultate anhand von Simulationen und bestimmen anschließend lokal und Bayes-optimale Versuchspläne zur Model-Averaging Schätzung eines Zielparameters, welche den asymptotischen mittleren quadratischen Fehler des Schätzers minimieren. Wir zeigen anhand von Beispielen, dass diese Versuchspläne die Präzision von Model-Averaging Schätzern deutlich erhöhen können. Zusätzlich verbessern diese Versuchspläne auch Schätzer nach Modellselektion, sowie Model-Averaging Schätzer mit zufälligen Gewichten. Zudem bestimmen wir erneut adaptive Versuchspläne, welche in verschiedenen Schritten die Model-Averaging Gewichte aktualisieren.de
dc.identifier.urihttp://hdl.handle.net/2003/38150
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20129
dc.language.isodede
dc.subjectBayes-optimale Versuchsplänede
dc.subjectLokale Alternativende
dc.subjectModel-Averagingde
dc.subjectModellselektionde
dc.subjectModellunsicherheitde
dc.subjectOptimale Versuchsplanungde
dc.subject.ddc310
dc.subject.rswkOptimale Versuchsplanungde
dc.titleOptimale Versuchsplanung für Model-Averaging Schätzerde
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissertation_Alhorn_UB.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: