Genetic Programming with Guaranteed Quality

dc.contributor.authorDroste, Stefande
dc.date.accessioned2004-12-07T08:19:13Z
dc.date.available2004-12-07T08:19:13Z
dc.date.issued1998-11-08de
dc.description.abstractWhen using genetic programming (GP) or other techniques that try to approximate unknown functions, the principle of Occam's razor is often applied: find the simplest function that explains the given data, as it is assumed to be the best approximation for the unknown function. Using a well-known result from learning theory, it is shown in this paper, how Occam's razor can help GP in finding functions, so that the number of functions that differ from the unknown function by more than a certain degree can be bounded theoretically. Experiments show how these bounds can be used to get guaranteed quality assurances for practical applications, even though they are much too conservative.en
dc.format.extent191542 bytes
dc.format.extent193791 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5321
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15266
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 15de
dc.subject.ddc004de
dc.titleGenetic Programming with Guaranteed Qualityen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CI1597_doc.ps
Size:
189.25 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
ci1597_doc.pdf
Size:
187.05 KB
Format:
Adobe Portable Document Format
Description:
DNB