A Simulation Study on Nonlinear Principal Component Analysis

dc.contributor.authorVoss, Brigittade
dc.date.accessioned2004-12-06T18:39:54Z
dc.date.available2004-12-06T18:39:54Z
dc.date.issued1999de
dc.description.abstractIn statistical practice multicollinearity of predictor variables is rather the rule than the exception and appropriate models are needed to avoid instability of predictions. Feature extraction methods reflect the idea that latent variables not measurable directly are underlying the original data. They try to reduce the dimension of the data by constructing new independent variables which keep as much information as possible from the original measurements. A common feature extraction method is Principal Component Analysis (PCA), which in its classical form is restricted to linear relationships among predictor variables. This paper is concerned with nonlinear principal component analysis (NLPCA) as introduced by Kramer (1991), who modelled his approach with help of artificial neural networks. By means of first simulation studies data derived from semicircles and circles are investigated with respect to their ability to be described by nonlinear principal components among the predictors.en
dc.format.extent10962194 bytes
dc.format.extent1232840 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4931
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-7031
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectartificial neural networksen
dc.subjectfeature extractionen
dc.subjectnonlinear principal component analysisen
dc.subject.ddc310de
dc.titleA Simulation Study on Nonlinear Principal Component Analysisen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
99_42.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr42-99.ps
Size:
10.45 MB
Format:
Postscript Files