Simulation study to evaluate when plasmode simulation is superior to parametric simulation in estimating the mean squared error of the least squares estimator in linear regression

dc.contributor.authorStolte, Marieke
dc.contributor.authorSchreck, Nicholas
dc.contributor.authorSlynko, Alla
dc.contributor.authorSaadati, Maral
dc.contributor.authorBenner, Axel
dc.contributor.authorRahnenführer, Jörg
dc.contributor.authorBommert, Andrea
dc.date.accessioned2024-08-09T13:00:19Z
dc.date.available2024-08-09T13:00:19Z
dc.date.issued2024-05-15
dc.description.abstractSimulation is a crucial tool for the evaluation and comparison of statistical methods. How to design fair and neutral simulation studies is therefore of great interest for both researchers developing new methods and practitioners confronted with the choice of the most suitable method. The term simulation usually refers to parametric simulation, that is, computer experiments using artificial data made up of pseudo-random numbers. Plasmode simulation, that is, computer experiments using the combination of resampling feature data from a real-life dataset and generating the target variable with a known user-selected outcome-generating model, is an alternative that is often claimed to produce more realistic data. We compare parametric and Plasmode simulation for the example of estimating the mean squared error (MSE) of the least squares estimator (LSE) in linear regression. If the true underlying data-generating process (DGP) and the outcome-generating model (OGM) were known, parametric simulation would obviously be the best choice in terms of estimating the MSE well. However, in reality, both are usually unknown, so researchers have to make assumptions: in Plasmode simulation studies for the OGM, in parametric simulation for both DGP and OGM. Most likely, these assumptions do not exactly reflect the truth. Here, we aim to find out how assumptions deviating from the true DGP and the true OGM affect the performance of parametric and Plasmode simulations in the context of MSE estimation for the LSE and in which situations which simulation type is preferable. Our results suggest that the preferable simulation method depends on many factors, including the number of features, and on how and to what extent the assumptions of a parametric simulation differ from the true DGP. Also, the resampling strategy used for Plasmode influences the results. In particular, subsampling with a small sampling proportion can be recommended.en
dc.identifier.urihttp://hdl.handle.net/2003/42640
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-24477
dc.language.isoenen
dc.relation.ispartofseriesPLoS ONE;19(5)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc310
dc.titleSimulation study to evaluate when plasmode simulation is superior to parametric simulation in estimating the mean squared error of the least squares estimator in linear regressionen
dc.typeTexten
dc.type.publicationtypeResearchArticleen
dcterms.accessRightsopen access
eldorado.secondarypublicationtrue
eldorado.secondarypublication.primarycitationStolte M, Schreck N, Slynko A, Saadati M, Benner A, Rahnenführer J, et al. (2024) Simulation study to evaluate when Plasmode simulation is superior to parametric simulation in estimating the mean squared error of the least squares estimator in linear regression. PLoS ONE 19(5): e0299989. https://doi.org/10.1371/journal.pone.0299989en
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1371/journal.pone.0299989

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
journal.pone.0299989.pdf
Size:
6.02 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: