Ph3PC – a monosubstituted C(0) atom in its triplet state

Alternative Title(s)

Abstract

This study introduces a novel class of carbon-centered diradicals: a monosubstituted C atom stabilized by a phosphine. The diradical Ph3P→C was photochemically generated from a diazophosphorus ylide precursor (Ph3PCN2) and characterized by EPR and isotope-sensitive ENDOR spectroscopy at low temperatures. Ph3P→C features an axial zero-field splitting parameter D=0.543 cm−1 with a vanishingly small rhombicity |E|/D=0.002. Time- and temperature-dependent measurements confirm a triplet ground state with a lifetime of approximately 10 min at 127 K in toluene-d8. Multireference electronic structure calculations predict a clear triplet ground state with a singlet-triplet gap greater than 20 kcal/mol. In contrast to divalent C(0) compounds, such as Ph3P→C←PPh3, in which carbon needs excitation into a highly-excited closed-shell 2s02p4 configuration, Ph3P→C can be explained by direct involvement of carbon in its natural 3P state arising from the 2s22p2 configuration.

Description

Table of contents

Keywords

reactive intermediates, carbon, EPR spectroscopy, diradicals, carbones

Subjects based on RSWK

Citation