Tight bounds for blind search on the integers
dc.contributor.author | Dietzfelbinger, Martin | de |
dc.contributor.author | Rowe, Jonathan E. | de |
dc.contributor.author | Wegener, Ingo | de |
dc.contributor.author | Woelfel, Philipp | de |
dc.date.accessioned | 2009-05-12T16:01:43Z | |
dc.date.available | 2009-05-12T16:01:43Z | |
dc.date.issued | 2008-01 | de |
dc.description.abstract | We analyze a simple random process in which a token is moved in the interval A = [0,n]: Fix a probability distribution µ over [1,n]. Initially, the token is placed in a random position in A. In round t, a random value d is chosen according to µ. If the token is in position a >= d, then it is moved to position a-d. Otherwise it stays put. Let T be the number of rounds until the token reaches position 0. We show tight bounds for the expectation of T for the optimal distribution µ, i.e., we show that min_µ{E_µ(T)} = Theta((log n)^2). For the proof, a novel potential function argument is introduced. The research is motivated by the problem of approximating the minimum of a continuous function over [0,1] with a "blind" optimization strategy. | en |
dc.identifier.uri | http://hdl.handle.net/2003/26147 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-8724 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Reihe CI; 240-08 | de |
dc.subject | computational complexity | en |
dc.subject | evolutionary algorithms | en |
dc.subject | lower bounds | en |
dc.subject.ddc | 004 | de |
dc.title | Tight bounds for blind search on the integers | en |
dc.type | Text | de |
dc.type.publicationtype | report | de |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1