Optimal designs for frequentist model averaging

dc.contributor.authorAlhorn, Kira
dc.contributor.authorSchorning, Kirsten
dc.contributor.authorDette, Holger
dc.date.accessioned2018-07-16T12:03:35Z
dc.date.available2018-07-16T12:03:35Z
dc.date.issued2018
dc.description.abstractWe consider the problem of designing experiments for the estimation of a target in regression analysis if there is uncertainty about the parametric form of the regression function. A new optimality criterion is proposed, which minimizes the asymptotic mean squared error of the frequentist model averaging estimate by the choice of an experimental design. Necessary conditions for the optimal solution of a locally and Bayesian optimal design problem are established. The results are illustrated in several examples and it is demonstrated that Bayesian optimal designs can yield a reduction of the mean squared error of the model averaging estimator up to 45%.en
dc.identifier.urihttp://hdl.handle.net/2003/37014
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19011
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;14/2018
dc.subjectmodel selectionen
dc.subjectBayesian optimal designsen
dc.subjectoptimal designen
dc.subjectmodel uncertaintyen
dc.subjectlocal misspecificationen
dc.subjectmodel averagingen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleOptimal designs for frequentist model averagingen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1418_SFB823_Alhorn_Schorning_Dette.pdf
Size:
400.5 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: